Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
J Am Soc Echocardiogr ; 35(12): 1226-1237.e7, 2022 Dec.
Article in English | MEDLINE | ID: covidwho-2095271

ABSTRACT

BACKGROUND: Transthoracic echocardiography is the leading cardiac imaging modality for patients admitted with COVID-19, a condition of high short-term mortality. The aim of this study was to test the hypothesis that artificial intelligence (AI)-based analysis of echocardiographic images could predict mortality more accurately than conventional analysis by a human expert. METHODS: Patients admitted to 13 hospitals for acute COVID-19 who underwent transthoracic echocardiography were included. Left ventricular ejection fraction (LVEF) and left ventricular longitudinal strain (LVLS) were obtained manually by multiple expert readers and by automated AI software. The ability of the manual and AI analyses to predict all-cause mortality was compared. RESULTS: In total, 870 patients were enrolled. The mortality rate was 27.4% after a mean follow-up period of 230 ± 115 days. AI analysis had lower variability than manual analysis for both LVEF (P = .003) and LVLS (P = .005). AI-derived LVEF and LVLS were predictors of mortality in univariable and multivariable regression analysis (odds ratio, 0.974 [95% CI, 0.956-0.991; P = .003] for LVEF; odds ratio, 1.060 [95% CI, 1.019-1.105; P = .004] for LVLS), but LVEF and LVLS obtained by manual analysis were not. Direct comparison of the predictive value of AI versus manual measurements of LVEF and LVLS showed that AI was significantly better (P = .005 and P = .003, respectively). In addition, AI-derived LVEF and LVLS had more significant and stronger correlations to other objective biomarkers of acute disease than manual reads. CONCLUSIONS: AI-based analysis of LVEF and LVLS had similar feasibility as manual analysis, minimized variability, and consequently increased the statistical power to predict mortality. AI-based, but not manual, analyses were a significant predictor of in-hospital and follow-up mortality.


Subject(s)
COVID-19 , Ventricular Function, Left , Humans , Stroke Volume , Artificial Intelligence , COVID-19/diagnosis , Echocardiography/methods
2.
Front Cardiovasc Med ; 9: 937068, 2022.
Article in English | MEDLINE | ID: covidwho-2043428

ABSTRACT

Background: As automated echocardiographic analysis is increasingly utilized, continued evaluation within hospital settings is important to further understand its potential value. The importance of cardiac involvement in patients hospitalized with COVID-19 provides an opportunity to evaluate the feasibility and clinical relevance of automated analysis applied to limited echocardiograms. Methods: In this multisite US cohort, the feasibility of automated AI analysis was evaluated on 558 limited echocardiograms in patients hospitalized with COVID-19. Reliability of automated assessment of left ventricular (LV) volumes, ejection fraction (EF), and LV longitudinal strain (LS) was assessed against clinically obtained measures and echocardiographic findings. Automated measures were evaluated against patient outcomes using ROC analysis, survival modeling, and logistic regression for the outcomes of 30-day mortality and in-hospital sequelae. Results: Feasibility of automated analysis for both LVEF and LS was 87.5% (488/558 patients). AI analysis was performed with biplane method in 300 (61.5%) and single plane apical 4- or 2-chamber analysis in 136 (27.9%) and 52 (10.7%) studies, respectively. Clinical LVEF was assessed using visual estimation in 192 (39.3%), biplane in 163 (33.4%), and single plane or linear methods in 104 (21.2%) of the 488 studies; 29 (5.9%) studies did not have clinically reported LVEF. LV LS was clinically reported in 80 (16.4%). Consistency between automated and clinical values demonstrated Pearson's R, root mean square error (RMSE) and intraclass correlation coefficient (ICC) of 0.61, 11.3% and 0.72, respectively, for LVEF; 0.73, 3.9% and 0.74, respectively for LS; 0.76, 24.4ml and 0.87, respectively, for end-diastolic volume; and 0.82, 12.8 ml, and 0.91, respectively, for end-systolic volume. Abnormal automated measures of LVEF and LS were associated with LV wall motion abnormalities, left atrial enlargement, and right ventricular dysfunction. Automated analysis was associated with outcomes, including survival. Conclusion: Automated analysis was highly feasible on limited echocardiograms using abbreviated protocols, consistent with equivalent clinically obtained metrics, and associated with echocardiographic abnormalities and patient outcomes.

3.
J Am Soc Echocardiogr ; 35(3): 295-304, 2022 03.
Article in English | MEDLINE | ID: covidwho-1499808

ABSTRACT

BACKGROUND: COVID-19 infection is known to cause a wide array of clinical chronic sequelae, but little is known regarding the long-term cardiac complications. We aim to report echocardiographic follow-up findings and describe the changes in left (LV) and right ventricular (RV) function that occur following acute infection. METHODS: Patients enrolled in the World Alliance Societies of Echocardiography-COVID study with acute COVID-19 infection were asked to return for a follow-up transthoracic echocardiogram. Overall, 198 returned at a mean of 129 days of follow-up, of which 153 had paired baseline and follow-up images that were analyzable, including LV volumes, ejection fraction (LVEF), and longitudinal strain (LVLS). Right-sided echocardiographic parameters included RV global longitudinal strain, RV free wall strain, and RV basal diameter. Paired echocardiographic parameters at baseline and follow-up were compared for the entire cohort and for subgroups based on the baseline LV and RV function. RESULTS: For the entire cohort, echocardiographic markers of LV and RV function at follow-up were not significantly different from baseline (all P > .05). Patients with hyperdynamic LVEF at baseline (>70%), had a significant reduction of LVEF at follow-up (74.3% ± 3.1% vs 64.4% ± 8.1%, P < .001), while patients with reduced LVEF at baseline (<50%) had a significant increase (42.5% ± 5.9% vs 49.3% ± 13.4%, P = .02), and those with normal LVEF had no change. Patients with normal LVLS (<-18%) at baseline had a significant reduction of LVLS at follow-up (-21.6% ± 2.6% vs -20.3% ± 4.0%, P = .006), while patients with impaired LVLS at baseline had a significant improvement at follow-up (-14.5% ± 2.9% vs -16.7% ± 5.2%, P < .001). Patients with abnormal RV global longitudinal strain (>-20%) at baseline had significant improvement at follow-up (-15.2% ± 3.4% vs -17.4% ± 4.9%, P = .004). Patients with abnormal RV basal diameter (>4.5 cm) at baseline had significant improvement at follow-up (4.9 ± 0.7 cm vs 4.6 ± 0.6 cm, P = .019). CONCLUSIONS: Overall, there were no significant changes over time in the LV and RV function of patients recovering from COVID-19 infection. However, differences were observed according to baseline LV and RV function, which may reflect recovery from the acute myocardial injury occurring in the acutely ill. Left ventricular and RV function tends to improve in those with impaired baseline function, while it tends to decrease in those with hyperdynamic LV or normal RV function.


Subject(s)
COVID-19 , COVID-19/complications , Echocardiography/methods , Follow-Up Studies , Heart Ventricles/diagnostic imaging , Humans , SARS-CoV-2 , Stroke Volume , Ventricular Function, Left , Ventricular Function, Right
4.
J Am Soc Echocardiogr ; 34(8): 819-830, 2021 08.
Article in English | MEDLINE | ID: covidwho-1237682

ABSTRACT

BACKGROUND: The novel severe acute respiratory syndrome coronavirus-2 virus, which has led to the global coronavirus disease-2019 (COVID-19) pandemic is known to adversely affect the cardiovascular system through multiple mechanisms. In this international, multicenter study conducted by the World Alliance Societies of Echocardiography, we aim to determine the clinical and echocardiographic phenotype of acute cardiac disease in COVID-19 patients, to explore phenotypic differences in different geographic regions across the world, and to identify parameters associated with in-hospital mortality. METHODS: We studied 870 patients with acute COVID-19 infection from 13 medical centers in four world regions (Asia, Europe, United States, Latin America) who had undergone transthoracic echocardiograms. Clinical and laboratory data were collected, including patient outcomes. Anonymized echocardiograms were analyzed with automated, machine learning-derived algorithms to calculate left ventricular (LV) volumes, ejection fraction, and LV longitudinal strain (LS). Right-sided echocardiographic parameters that were measured included right ventricular (RV) LS, RV free-wall strain (FWS), and RV basal diameter. Multivariate regression analysis was performed to identify clinical and echocardiographic parameters associated with in-hospital mortality. RESULTS: Significant regional differences were noted in terms of patient comorbidities, severity of illness, clinical biomarkers, and LV and RV echocardiographic metrics. Overall in-hospital mortality was 21.6%. Parameters associated with mortality in a multivariate analysis were age (odds ratio [OR] = 1.12 [1.05, 1.22], P = .003), previous lung disease (OR = 7.32 [1.56, 42.2], P = .015), LVLS (OR = 1.18 [1.05, 1.36], P = .012), lactic dehydrogenase (OR = 6.17 [1.74, 28.7], P = .009), and RVFWS (OR = 1.14 [1.04, 1.26], P = .007). CONCLUSIONS: Left ventricular dysfunction is noted in approximately 20% and RV dysfunction in approximately 30% of patients with acute COVID-19 illness and portend a poor prognosis. Age at presentation, previous lung disease, lactic dehydrogenase, LVLS, and RVFWS were independently associated with in-hospital mortality. Regional differences in cardiac phenotype highlight the significant differences in patient acuity as well as echocardiographic utilization in different parts of the world.


Subject(s)
COVID-19/epidemiology , Echocardiography/methods , Heart Diseases/diagnosis , Heart Diseases/mortality , Heart Ventricles/diagnostic imaging , Pandemics , Aged , COVID-19/diagnosis , Comorbidity , Europe/epidemiology , Female , Follow-Up Studies , Hospital Mortality/trends , Humans , Male , Middle Aged , Prospective Studies , Survival Rate/trends
SELECTION OF CITATIONS
SEARCH DETAIL